

WHY WE CLEAN

2026

800.482.6088

nexus-now.com

JAN / SAN ENVIRONMENTAL PRODUCTS GUIDE

INTRODUCTION

Do you remember the last time you were sick? Perhaps you had a runny nose, chest congestion, a cough and maybe even a fever with body aches. Becoming ill is no fun and it can be avoided. The first step is understanding how you became ill and where it happened. If you dive into the causes of most illnesses it is a result of a dirty environment that might harbor mildew, mold, dirt, dust, viruses and germs. These ugly causes of illnesses linger on surfaces, inside of carpet, on walls, keyboards and even in the air. In this Nexus publication we are going to go over the reasons "Why We Clean" and the importance of it on a daily basis in any environment. In the end Nexus has the solutions that you need to ensure that you are able to clean your environment to the extent that it is adequately clean and safe for employees, friends and family to live in and work without the risk of becoming ill. Our great partner manufacturers are all listed at the end of this publication along with their website addresses for your review. Please feel free to reach out to us to schedule a free environmental consultation of your operation. We will be glad to help you refine your cleaning protocol with the industry's best cleaning products.

Thank you

Chris Matson

President

Nexus

TABLE OF CONTENTS

- 2 INTRODUCTION
- 3 TABLE OF CONTENTS
- 5 U.S. HEALTH STATISTICS – COMMON COLD
- 6 THE IMPACT OF MRSA – C DIFF & ECOLI
- 9 VIRUSES
- 13 DIRT
- 15 DUST MITES
- 17 GERMS
- 18 ODOR CONTROL
- 20 DUST
- 22 BACTERIA
- 24 MILDEW
- 25 MOLD
- 27 WHY WE CLEAN
- 28 HOW NEXUS CAN HELP
- 29 JAN/SAN MANUFACTURERS
- 33 NEXUS DIRECTORY

U.S. HEALTH STATISTICS – COMMON COLD

In the U.S., the common cold is responsible for millions of illnesses each year, while seasonal influenza places a substantial and severe burden on the population, as demonstrated by the high hospitalization and mortality rates during the 2024–2025 flu season. The two illnesses, though often confused, have distinct levels of severity and public health impact.

THE COMMON COLD: A PERVERSIVE, COSTLY NUISANCE

The common cold is a frequent, typically mild viral infection of the upper respiratory tract. While not a severe threat to the population's health, its high prevalence results in significant economic and productivity losses.

- Prevalence: There are over one billion colds in the U.S. each year. On average, adults experience two to four colds annually, while children can have as many as eight per year.
- Economic impact: The widespread nature of colds leads to immense economic costs.

Annually in the U.S., the common cold accounts for:

- 75 to 100 million physician visits, costing an estimated \$7.7 billion
- Over \$3 billion in costs for prescription and over-the-counter medications
- \$20 billion in total productivity losses from missed workdays for employees and parents

SEASONAL INFLUENZA: A RECURRING THREAT

Influenza, or the flu, is a more severe and serious respiratory illness than the common cold. Statistics from the Centers for Disease Control and Prevention (CDC) highlight its significant annual health impact, which varies each season depending on the circulating virus strains and vaccine effectiveness.

THE SEVERE 2024–2025 FLU SEASON

The 2024–2025 flu season was categorized by the CDC as "high severity" overall and for all age groups, marking the most severe non-pandemic flu season in over a decade.

- Illnesses, hospitalizations, and deaths:

- Illnesses: Preliminary estimates suggest at least 47 million people were sick with the flu.
- Hospitalizations: There were an estimated 610,000 hospitalizations. The cumulative hospitalization rate was the highest since at least 2010.
- Deaths: The season led to an estimated 27,000 deaths. The 280 reported pediatric flu deaths were the highest number for a non-pandemic season since tracking began in 2004.

■ Impact on specific populations:

- Older adults: Adults aged 75 and older had the highest hospitalization rates, approaching 600 per 100,000 people.

- Racial and ethnic disparities: Non-Hispanic Black persons experienced the highest cumulative hospitalization rate per 100,000 people.

- Pre-existing conditions: About 89% of hospitalized patients had at least one underlying medical condition.

- Vaccination rates: Vaccination rates for the 2024–2025 season remained suboptimal and were a contributing factor to the high severity.

- Children: As of April 2025, vaccination rates for children ages 6 months to 17 years had dropped to 49.2%, lower than pre-pandemic levels.
- Adults: Only 32.4% of hospitalized patients had received an influenza vaccine.

THE PATH FORWARD IS TO CLEAN !

Statistics from the 2024–2025 season highlight the continued threat of influenza and the necessity of public health measures. Increasing vaccination coverage remains a top priority for the CDC to reduce the risk of flu-related illness, hospitalization, and death. Public health messaging will also continue to emphasize hygiene practices, particularly hand-washing and avoiding close contact with sick individuals, to mitigate the spread of both cold and flu viruses. Statistics show that influenza illnesses could be dramatically reduced through one simple solution – to clean more often !

THE IMPACT OF MRSA – C DIFF & ECOLI

Once primarily a hospital-acquired infection (HAI), MRSA has expanded its reach into the wider community, making its control more complex. While progress in combating hospital-onset MRSA infections was made in the past decade, recent data shows concerning trends:

- **Stalled progress:** After a significant decline between 2005 and 2012, the rate of reduction for hospital-onset MRSA bloodstream infections slowed during 2013–2016.
- **Pandemic setback:** The COVID-19 pandemic led to higher rates of hospital-onset MRSA bacteremia from 2020 to 2022, fueled by overwhelmed hospital systems and high-acuity patients.
- **High mortality:** The risk of death for MRSA bloodstream infections remains significant, with higher mortality rates for hospital-onset cases compared to community-onset cases. A 2017 study estimated nearly 20,000 deaths associated with *S. aureus* bloodstream infections nationwide.
- **Community-acquired threat:** The forecast for 2024 suggested that the majority of new MRSA cases would be community-acquired (CA-MRSA), which is challenging to track and contain because its source is often unclear.

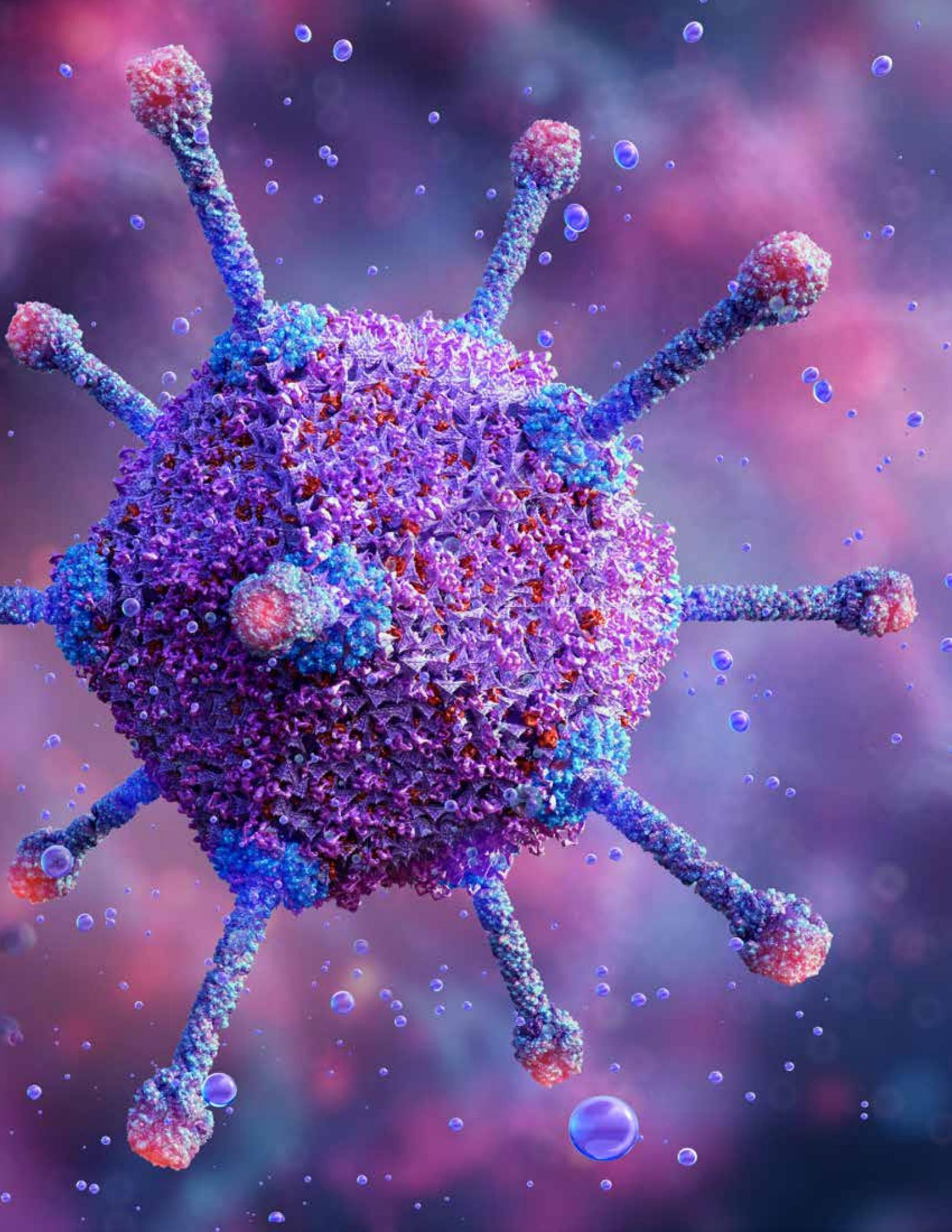
C. DIFF: THE URGENT THREAT OF A SHIFTING FOE

The Centers for Disease Control and Prevention (CDC) has classified *C. diff* as an urgent public health threat, primarily due to its resistance to many antibiotics. It causes severe diarrhea and colitis, leading to poor outcomes, particularly among older adults.

- **Illness and death:** Each year, *C. diff* causes approximately half a million illnesses in the U.S., with a staggering 29,300 associated deaths, according to 2020 data from the CDC. In 2017, the CDC estimated over 460,000 infections, 223,900 hospitalizations, and 12,800 deaths.
- **Elderly at risk:** The risk of death is exceptionally high for those aged 65 or older. A 2015 study showed that 1 in 11 people in this age group diagnosed with a healthcare-associated *C. diff* infection died within a month.
- **Recurrence is a major issue:** A significant number of patients, between 20% and 35%, will experience a recurrence of *C. diff*, often within two to eight weeks of the initial infection. This cycle of reinfection and subsequent antibiotic use can be debilitating and expensive.

- **Changing epidemiology:** While healthcare-associated *C. diff* infections have been declining, community-associated cases are on the rise. This shift suggests that prevention strategies must extend beyond inpatient facilities to be effective.

E. COLI: BEYOND FOOD POISONING


While *E. coli* is best known for its foodborne outbreaks, different strains pose persistent threats that can lead to more severe, extraintestinal infections.

- **Foodborne outbreaks:** Recent foodborne illness reports highlight the ongoing risk from *E. coli*. For example, the 2024 McDonald's *E. coli* outbreak involved 104 people and resulted in one death. Another 2024 outbreak linked to carrots sickened dozens across multiple states and led to one death.
- **Extraintestinal infections:** Foodborne *E. coli* strains can cause extraintestinal invasive infections (IEI), including urinary tract and bloodstream infections, which carry high mortality rates. A 2023 study found that foodborne bacteria, including *E. coli*, were likely responsible for more than half a million urinary tract infections in the U.S. every year.
- **Significant hospitalization burden:** Data from 2009 to 2016 showed a substantial healthcare burden from IEI caused by *E. coli*, with over 71,000 hospital visits over the period. Alarmingly, 8.4% of these inpatients died in the hospital.

THE BIG PICTURE: COSTS AND CHALLENGES

These three pathogens collectively pose a monumental and evolving threat to the US healthcare system. They contribute to a growing crisis of antimicrobial resistance, increasing hospital stays, raising costs, and disproportionately affecting vulnerable populations like the elderly and those in low-income areas. Combating this multifaceted challenge requires continued vigilance, adaptable prevention strategies, and a sustained focus on antimicrobial stewardship to protect vulnerable populations and mitigate the costly impact of these stubborn bacteria. These are prime examples as to why it is so important to clean, clean and clean some more in every environment on a frequent basis.

VIRUSES

Humans have been battling viruses since before our species had even evolved into its modern form. For some viral diseases, vaccines and antiviral drugs have allowed us to keep infections from spreading widely, and have helped sick people recover. For one disease — smallpox — we've been able to eradicate it, ridding the world of new cases.

But we're a long way from winning the fight against viruses. In recent decades, several viruses have jumped from animals to humans and triggered sizable outbreaks, claiming thousands of lives. The viral strain that drove the 2014-2016 Ebola outbreak in West Africa kills up to 90% of the people it infects, making it the most lethal member of the Ebola family.

But there are other viruses out there that are equally deadly, and some that are even deadlier. Some viruses, including the novel coronavirus currently driving outbreaks around the globe, have lower fatality rates, but still pose a serious threat to public health as we don't yet have the means to combat them. Here are some of the worst killers, based on the likelihood that a person will die if they are infected with one of them, the sheer numbers of people they have killed, and whether they represent a growing threat.

MARBURG VIRUS

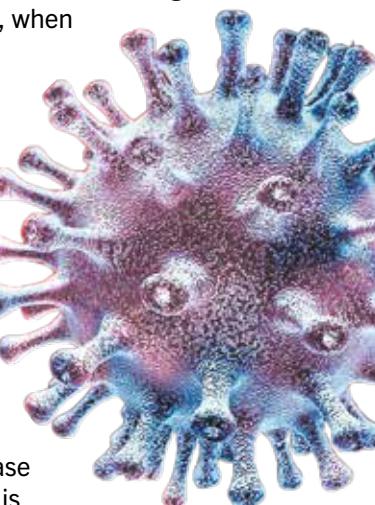
Scientists identified Marburg virus in 1967, when small outbreaks occurred among lab workers in Germany who were exposed to infected monkeys imported from Uganda. Marburg virus is similar to Ebola in that both can cause hemorrhagic fever, meaning that infected people develop high fevers and bleeding throughout the body that can lead to shock, organ failure and death.

The mortality rate in the first outbreak was 25%, but it was more than 80% in the 1998-2000 outbreak in the Democratic Republic of Congo, as well as in the 2005 outbreak in Angola, according to the World Health Organization (WHO).

EBOLA VIRUS

The first known Ebola outbreaks in humans struck simultaneously in the Republic of the Sudan and the Democratic Republic of Congo in 1976. Ebola is spread through contact with blood or other body fluids, or tissue from infected people or animals. The known strains vary dramatically in their deadliness, Elke Muhlberger, an Ebola virus expert and associate professor of microbiology at Boston University, told Live Science. One strain, Ebola Reston, doesn't even make people sick. But for the Bundibugyo strain, the fatality rate is up to 50%, and it is up to 71% for the Sudan strain, according to WHO. The outbreak underway in West Africa began in early 2014, and is the largest and most complex outbreak of the disease to date, according to WHO.

HIV


In the modern world, the deadliest virus of all may be HIV. "It is still the one that is the biggest killer," said Dr. Amesh Adalja, an infectious disease physician and spokesman for the Infectious Disease Society of America. An estimated 32 million people have died from HIV since the disease was first recognized in the early 1980s. "The infectious disease that takes the biggest toll on mankind right now is HIV," Adalja said. Powerful antiviral drugs have made it possible for people to live for years with HIV. But the disease continues to devastate many low- and middle-income countries, where 95% of new HIV infections occur. Nearly 1 in every 25 adults within the WHO African region is HIV-positive, accounting for more than two-thirds of the people living with HIV worldwide.

SMALLPOX

In 1980, the World Health Assembly declared the world free of smallpox. But before that, humans battled smallpox for thousands of years, and the disease killed about 1 in 3 of those it infected. It left survivors with deep, permanent scars and, often, blindness. Mortality rates were far higher in populations outside of Europe, where people had little contact with the virus before visitors brought it to their regions. For example, historians estimate 90% of the native population of the Americas died from smallpox introduced by European explorers. In the 20th century alone, smallpox killed 300 million people. "It was something that had a huge burden on the planet, not just death but also blindness, and that's what spurred the campaign to eradicate from the Earth," Adalja said.

HANTAVIRUS

The Hantavirus pulmonary syndrome (HPS) first gained wide attention in the U.S. in 1993, when a healthy, young Navajo man and his fiancée living in the Four Corners area of the United States died within days of developing shortness of breath. A few months later, health authorities isolated hantavirus from a deer mouse living in the home of one of the infected people. More than 600 people in the U.S. have now contracted HPS, and 36% have died from the disease, according to the Centers for Disease Control and Prevention. The virus is not transmitted from one person to another, rather, people contract the disease from exposure to the droppings of infected mice. Previously, a different hantavirus caused an outbreak in the early 1950s, during the Korean War, according to a 2010 paper in the journal Clinical

Microbiology Reviews. More than 3,000 troops became infected, and about 12% of them died. While the virus was new to Western medicine when it was discovered in the U.S., researchers realized later that Navajo medical traditions describe a similar illness, and linked the disease to mice.

INFLUENZA

During a typical flu season, up to 500,000 people worldwide will die from the illness, according to WHO. But occasionally, when a new flu strain emerges, a pandemic results with a faster spread of disease and, often, higher mortality rates.

The most deadly flu pandemic, sometimes called the Spanish flu, began in 1918 and sickened up to 40% of the world's population, killing an estimated 50 million people."I think that it is possible that something like the 1918 flu outbreak could occur again," Muhlberger said. "If a new influenza strain found its way in the human population, and could be transmitted easily between humans, and caused severe illness, we would have a big problem."

DENGUE VIRUS

Dengue virus first appeared in the 1950s in the Philippines and Thailand, and has since spread throughout the tropical and subtropical regions of the globe. Up to 40% of the world's population now lives in areas where dengue is endemic, and the disease — with the mosquitoes that carry it — is likely to spread farther as the world warms. Dengue sickens 50 to 100 million people a year, according to WHO. Although the mortality rate for dengue fever is lower than some other viruses, at 2.5%, the virus can cause an Ebola-like disease called dengue hemorrhagic fever, and that condition has a mortality rate of 20% if left untreated. "We really need to think more about dengue virus because it is a real threat to us," Muhlberger said. A vaccine for Dengue was approved in 2019 by the U.S. Food and Drug Administration for use in children 9-16 years old living in an areas where dengue is common and with a confirmed history of virus infection, according to the CDC. In some countries, an approved vaccine is available for those 9-45 years old, but again, recipients must have contracted a confirmed case of dengue in the past. Those who have not caught the virus before could be put at risk of developing severe dengue if given the vaccine.

ROTOVIRUS

Two vaccines are now available to protect children from rotavirus, the leading cause of severe diarrheal illness among babies and young children. The virus can spread rapidly, through what researchers call the fecal-oral route (meaning that small particles of feces end up being consumed). Although children in the developed world rarely die from rotavirus infection, the disease is a killer in the developing world, where rehydration treatments are not widely available. The WHO estimates that worldwide, 453,000 children younger than age 5 died from rotavirus infection in 2008. But countries that have introduced the vaccine have reported sharp declines in rotavirus hospitalizations and deaths.

SARS VIRUS

The virus that causes severe acute respiratory syndrome, or SARS, first appeared in 2002 in the Guangdong province of southern China, according to the WHO. The virus likely emerged in bats, initially, then hopped into nocturnal mammals called civets before finally infecting humans. After triggering an outbreak in China, SARS spread to 26 countries around the world, infecting more than 8000 people and killing more than 770 over the course of two years.

The disease causes fever, chills and body aches, and often progresses to pneumonia, a severe condition in which the lungs become inflamed and fill with pus. SARS has an estimated mortality rate of 9.6%, and as of yet, has no approved treatment or vaccine. However, no new cases of SARS have been reported since the early 2000s, according to the CDC.

SARS

CoV-2 VIRUS – The SARS CoV-2 Virus belongs to the same large family of viruses as SARS-CoV, known as coronaviruses, and was first identified in December 2019 in the Chinese city of Wuhan. The virus likely originated in bats, like SARS-CoV, and passed through an intermediate animal before infecting people.

Since its appearance, the virus has infected tens of thousands of people in China and thousands of others worldwide. The ongoing outbreak prompted an extensive quarantine of Wuhan and nearby cities, restrictions on travel to and from affected countries and a worldwide effort to develop diagnostics, treatments and vaccines. The disease caused by SARS-CoV-2, called COVID-19, has an estimated mortality rate of about 2.3%. People who are older or have underlying health conditions seem to be most at risk of having severe disease or complications. Common symptoms include fever, dry cough and shortness of breath, and the disease can progress to pneumonia in severe cases.

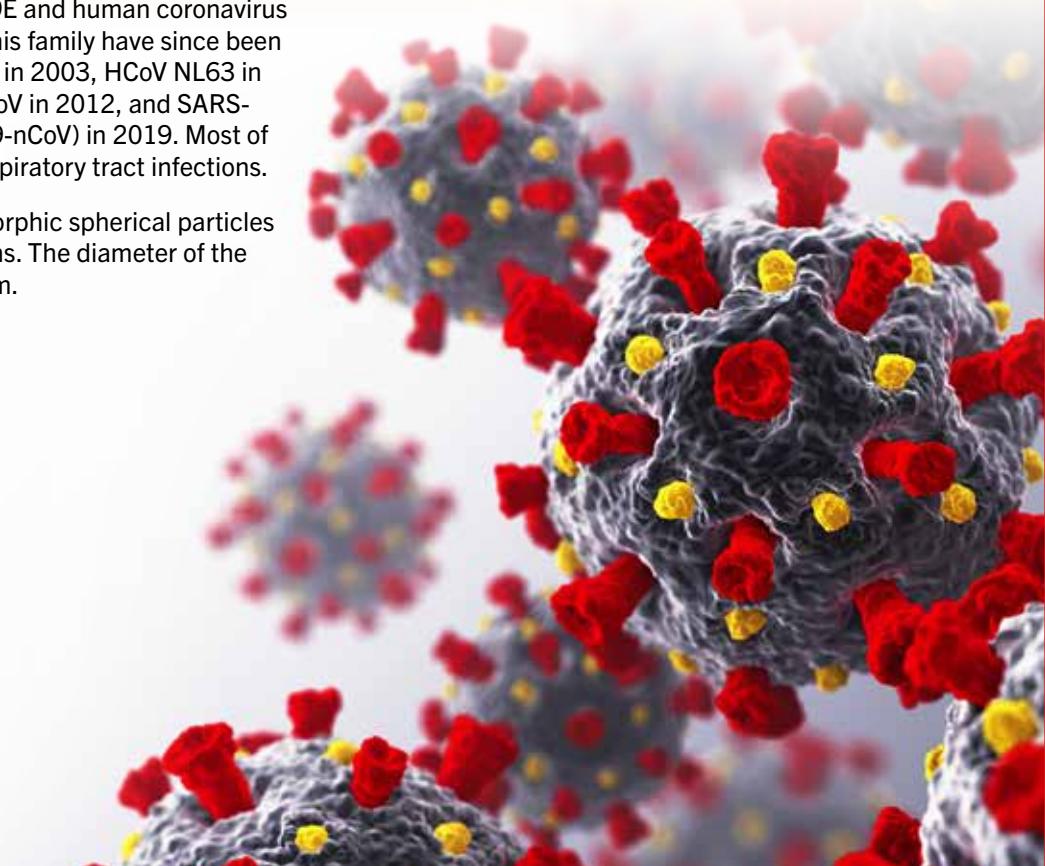
MERS VIRUS

The virus that causes Middle East respiratory syndrome, or MERS, sparked an outbreak in Saudi Arabia in 2012 and another in South Korea in 2015. The MERS virus belongs to the same family of viruses as SARS-CoV and SARS-CoV-2, and likely originated in bats, as well. The disease infected camels before passing into humans and triggers fever, coughing and shortness of breath in infected people. MERS often progresses to severe pneumonia and has an estimated mortality rate between 30% and 40%, making it the most lethal of the known coronaviruses that jumped from animals to people. As with SARS-CoV and SARS-CoV-2, MERS has no approved treatments or vaccine.¹

COVID-19 (CORONAVIRUS)

COVID-19 (CORONAVIRUS)

Coronavirus disease (COVID-19) is a highly contagious disease caused by a newly discovered coronavirus. Coronaviruses are a group of related viruses that cause diseases in mammals and birds. In humans, coronaviruses cause respiratory tract infections that can be mild, such as some cases of the common cold (among other possible causes, predominantly rhinoviruses), and others that can be lethal, such as SARS, MERS, and COVID-19. Symptoms in other species vary: in chickens, they cause an upper respiratory tract disease, while in cows and pigs they cause diarrhea. Coronaviruses constitute the subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales, and realm Riboviria.[5][6] They are enveloped viruses with a positive-sense single-stranded RNA genome and a nucleocapsid of helical symmetry. The genome size of coronaviruses ranges from approximately 27 to 34 kilobases, the largest among known RNA viruses.[7] The name coronavirus is derived from the Latin corona, meaning "crown" or "halo", which refers to the characteristic appearance reminiscent of a crown or a solar corona around the virions (virus particles) when viewed under two-dimensional transmission electron microscopy, due to the surface being covered in club-shaped protein spikes. Human coronaviruses were first discovered in the late 1960s. The earliest ones discovered were an infectious bronchitis virus in chickens and two in human patients with the common cold (later named human coronavirus 229E and human coronavirus OC43).[9] Other members of this family have since been identified, including SARS-CoV in 2003, HCoV NL63 in 2004, HKU1 in 2005, MERS-CoV in 2012, and SARS-CoV-2 (formerly known as 2019-nCoV) in 2019. Most of these have involved serious respiratory tract infections.


Coronaviruses are large pleomorphic spherical particles with bulbous surface projections. The diameter of the virus particles is around 120 nm.

The envelope of the virus in electron micrographs appears as a distinct pair of electron dense shells.

Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness.

The best way to prevent and slow down transmission is be well informed about the COVID-19 virus, the disease it causes and how it spreads. Protect yourself and others from infection by washing your hands or using an alcohol based rub frequently and not touching your face. The COVID-19 virus spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, so it's important that you wear a suitable face mask and practice respiratory etiquette (for example, by coughing into a flexed elbow).

At this time, there are no specific vaccines or treatments for COVID-19. There are yet to be vaccines or antiviral drugs to prevent or treat human coronavirus infections. However, there are many ongoing clinical trials evaluating potential treatments like the anti-malarial drug chloroquine².

2 SOURCE: CDC & Wikipedia

DIRT

Dirt is unclean matter, especially when in contact with a person's clothes, skin or possessions. Common types of dirt include:

DUST: a general powder of organic or mineral matter

FILTH: foul matter such as excrement

GRIME: a black, ingrained dust such as soot

SOIL: the mix of clay, sand, and humus which lies on top of bedrock

When things are dirty they are usually cleaned with solutions like hard surface cleaner and other chemicals solutions; much domestic activity is for this purpose — washing, sweeping and so forth.

In a commercial setting, a dirty appearance gives a bad impression. An example of such a place is a restaurant. The dirt in such cases may be classified as temporary, permanent, and deliberate. Temporary dirt is streaks and detritus that may be removed by ordinary daily cleaning. Permanent dirt is ingrained stains or physical damage to an object, which require major renovation to remove. Deliberate dirt is that which results from design decisions such as decor in dirty orange or grunge styling.

As cities developed, arrangements were made for the disposal of trash through the use of waste management services. In the United Kingdom, the Public Health Act 1875 required households to place their refuse into a container which could be moved so that it could be carted away. This was the first legal creation of the dustbin.

Modern society is now thought to be more hygienic. Lack of contact with microorganisms in dirt when growing up is hypothesised to be the cause of the epidemic of allergies such as asthma. The human immune system requires activation and exercise in order to function properly and exposure to dirt may achieve this. For example, the presence of staphylococcus bacteria on the surface of the skin regulates the inflammation which results from injury.

Even when no visible dirt is present, contamination by microorganisms, especially pathogens, can still cause an object or location to be considered dirty. For example, computer keyboards are especially dirty as they contain on average 70 times more microbes than a lavatory seat.

HARMFUL BACTERIA IN SOIL

Bacteria can be found on the human body, within the air you breathe, in water and even in soil. Harmful bacteria found

within soil can cause potential harm to humans, plants and trees. Some forms of bacteria can produce poisonous toxins, which can be fatal if the spores of such bacteria are inhaled, ingested or transferred through a wound.¹

BACILLUS SPECIES

There are a few variety of Bacillus. *Bacillus cereus* is a bacteria commonly found in soil. *B. cereus* is capable of withstanding extreme conditions, such as heat. Food grown in soil containing *B. cereus* can become susceptible to contamination. It is also possible to inhale aggravated *B. cereus* spores, or have spores enter broken skin when you don't wear gloves while gardening. According to the Textbook of Bacteriology, *B. cereus* contains three types of enterotoxins. Enterotoxins are toxins produced by bacteria and are responsible for causing the vomiting and diarrhea associated with food poisoning.

CROWN GALL DISEASE

Agrobacterium tumefaciens is a form of bacteria that causes disease in plant tissue. If *A. tumefaciens* enters a healthy tree or plant through the root or stem from the soil, the bacterium will parasitize the tree or plant. The host of *A. tumefaciens* will succumb to tumor development and changes in plant metabolism. Tumors can begin as white callused tissue on the tree or plant. To prevent crown gall disease, it is important for plant life to be sustained outside of contaminated soil.

ANTHRAX DEVELOPMENT

Anthrax is caused by the bacterium *Bacillus anthracis*. *B. anthracis* can survive for years within soil. When the bacterium produces spores, the potential for contamination becomes possible. Spores can be disturbed during gardening. According to the Directors of Health Promotion and Education, the inhalation of spores from contaminated soil can result in illness. Anthrax is also responsible for producing a toxin that can result in skin ulcers, respiratory distress, fever, vomiting, diarrhea, nausea and possible death.

ANAEROBIC BACTERIA

Anaerobic bacteria don't require oxygen to survive. One particular species, *Clostridium perfringens* can be found virtually everywhere. The bacteria can be found in the intestines of humans and animals. However, the bacteria is predominantly found in soil and water. *C. perfringens* is one of the most common bacterium responsible for food-borne illnesses.

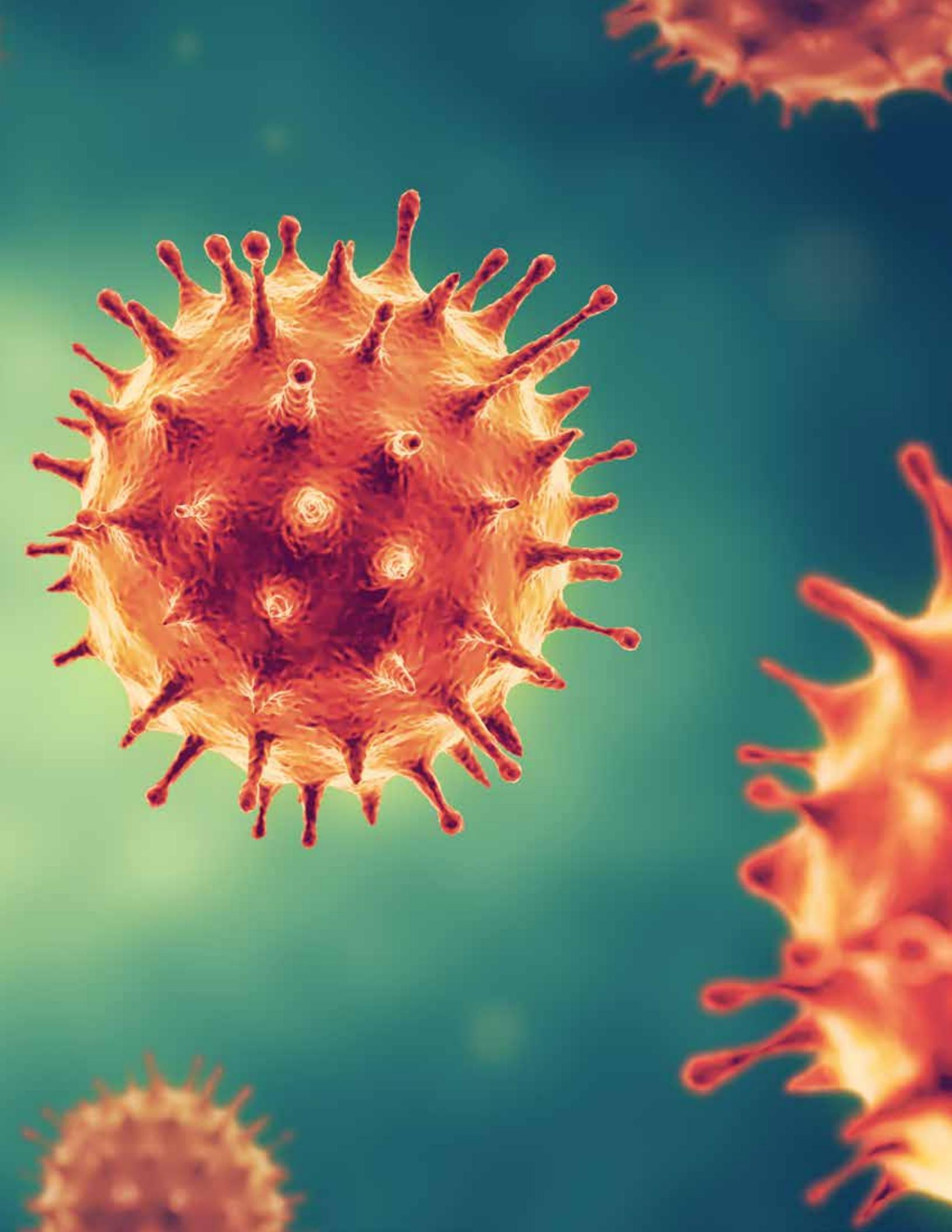
DUST MITES

House dust mites (HDM, or simply dust mites) are mites found in association with dust in dwellings. The main species are:¹

- *Dermatophagoides farinae* (American house dust mite)
- *Dermatophagoides microceras*
- *Dermatophagoides pteronyssinus* (European house dust mite)
- *Euroglyphus maynei* (Mayne's house dust mite)

House dust mites are present indoors wherever humans live. Positive tests for dust mite allergies are extremely common among people with asthma. Dust mites are microscopic arachnids whose primary food is dead human skin cells, but they do not live on living people. They and their feces and other allergens which they produce are major constituents of house dust, but because they are so heavy they are not suspended for long in the air. They are generally found on the floor and other surfaces until disturbed (by walking, for example). It could take somewhere between twenty minutes and two hours for dust mites to settle back down out of the air.

Dust mites are a nesting species that prefers a dark, warm, and humid climate. They flourish in mattresses, bedding, upholstered furniture, and carpets. Their feces include enzymes that are released upon contact with a moist surface, which can happen when a person inhales, and these enzymes can kill cells within the human body. House dust mites did not become a problem until humans began to use textiles, such as western style blankets and clothing.


House dust mites, due to their very small size and translucent bodies, are barely visible to the unaided eye. A typical house dust mite measures 0.2–0.3 mm (0.008–0.012 in) in length. For accurate identification, one needs at least 10× magnification. The body of the house dust mite has a striated cuticle.

The average life cycle for a house dust mite is 65–100 days. A mated female house dust mite can live up to 70 days, laying 60 to 100 eggs in the last five weeks of her life. In a 10-week life span, a house dust mite will produce approximately 2,000 fecal particles and an even larger number of partially digested enzyme-covered dust particles.

Dust mites are found worldwide, but are found more commonly in humid regions. The species *Blomia tropicalis* is typically found only in tropical or subtropical regions. Detectable dust mite allergen was found in the beds of about 84% of surveyed United States homes.

GERMS

Germs are found all over the world, in all types of environments. The four major types of germs are bacteria, viruses, fungi, and protozoa. They can invade plants, animals, and people, and sometimes they can make us sick.

BACTERIA

Bacteria are tiny, one-celled creatures that get nutrients from their environments in order to live. In some cases that environment is a human body. Bacteria can reproduce outside of the body or within the body as they cause infections. Some infections that bacteria can cause include ear infections, sore throats (tonsillitis or strep throat), cavities, and pneumonia. But not all bacteria are bad. Some bacteria are good for our bodies — they help keep things in balance. Good bacteria live in our intestines and help us use the nutrients in the food we eat and make waste from what's left over. We couldn't make the most of a healthy meal without these important helper germs! Some bacteria are also used by scientists in labs to produce medicines and vaccines.

VIRUSES

Viruses need to be inside living cells to grow and reproduce. Most viruses can't survive very long if they're not inside a living thing like a plant, animal, or person. Whatever a virus lives in is called its host. When viruses get inside people's bodies, they can spread and make people sick. Viruses cause chickenpox, measles, flu, and many other diseases. Because some viruses can live for a short time on something like a doorknob or countertop, be sure to wash your hands regularly!

FUNGI

Fungi are multi-celled (made of many cells), plant-like organisms. Unlike other plants, fungi cannot make their own food from soil, water, and air. Instead, fungi get their nutrition from plants, people, and animals. They love to live in damp, warm places, and many fungi are not dangerous in healthy people. An example of something caused by fungi is athlete's foot, that itchy rash that teens and adults sometimes get between their toes.

PROTOZOA

Protozoa are one-cell organisms that love moisture and often spread diseases through water. Some protozoa cause intestinal infections that lead to diarrhea, nausea, and belly pain.

Once germs invade our bodies, they dig in for a long stay. They gobble up nutrients and energy, and can produce toxins, which are proteins that act like poisons. Those toxins can cause symptoms of common infections, like fevers, sniffles, rashes, coughing, vomiting, and diarrhea.

How do doctors figure out what germs are doing? They take a closer look. By looking at samples of blood, urine, and other fluids under a microscope or sending these samples to a laboratory for more tests, doctors can tell which germs are living in your body and how they are making you sick.

HOW CAN YOU PROTECT YOURSELF FROM GERMS?

Most germs are spread through the air in sneezes, coughs, or even breaths. Germs can also spread in sweat, saliva, and blood. Some pass from person to person by touching something that is contaminated, like shaking hands with someone who has a cold and then touching your own nose. Steering clear of the things that can spread germs is the best way to protect yourself. And that means . . .

Washing your hands well and often is the best way to beat these tiny warriors. Wash your hands every time you cough or sneeze, before you eat or prepare foods, after you use the bathroom, after you touch animals and pets, after you play outside, and after you visit a sick relative or friend.

There is a right way to wash your hands. Use warm water and soap and rub your hands together for at least 15 seconds, which is about how long it takes to sing "Happy Birthday."

Cover your nose and mouth when you sneeze and cover your mouth when you cough to keep from spreading germs. So if you have to cough, it is best to do it in your elbow so you are not contaminating your hands.

Using tissues for your sneezes and sniffles is another great weapon against germs. But don't just throw tissues on the floor to pick up later. Toss them in the trash and, again, wash your hands!

Another way to fight and prevent infections is to make sure you get all the routine immunizations from your doctor. You can also keep your immune system strong and healthy by eating well, exercising regularly, and getting good sleep. All this will help you to be prepared to fight germs that cause illness.¹

THE HEALTH IMPACT OF MALODORS

While often dismissed as a mere nuisance, malodor, or unpleasant odor, poses a significant, yet often overlooked, public health problem in the United States. Beyond the immediate discomfort, prolonged exposure to offensive smells can trigger a cascade of negative physical, mental, and social health effects. This silent threat disproportionately affects low-income and minority communities, highlighting malodor as a key environmental justice issue. Malodor in businesses can negatively impact health through direct physical effects like headaches, dizziness, and respiratory irritation from airborne chemicals, as well as indirect effects on mental well-being such as increased stress, anxiety, and reduced productivity. These effects can extend beyond employees to customers and nearby communities, creating a significant health burden and even leading to long-term health risks with chronic exposure.

DIRECT PHYSICAL HEALTH IMPACTS

RESPIRATORY IRRITATION:

Strong odors, especially those from irritant gases like hydrogen sulfide or ammonia, can cause coughing, wheezing, and shortness of breath.

HEADACHES AND DIZZINESS:

Exposure to malodors is strongly linked to headaches and dizziness, particularly after an acute event.

OTHER SYMPTOMS:

Common immediate symptoms include burning eyes, nausea, and fatigue.

AGGRAVATED CONDITIONS:

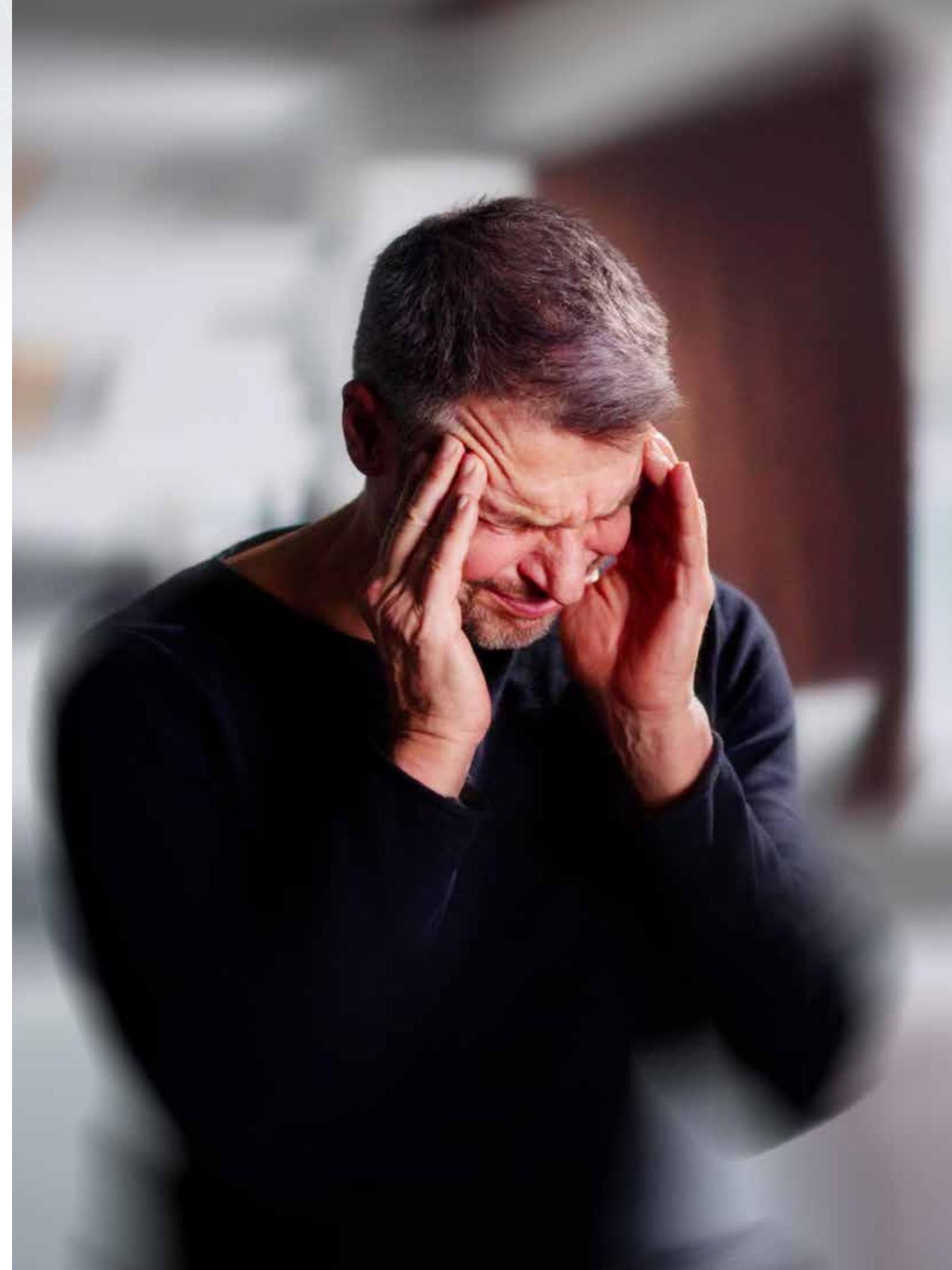
Existing conditions like asthma can be worsened, with studies showing a significant increase in asthma symptoms during odor events.

THE MIND AND BODY UNDER SIEGE

Malodor's impact on human health is complex, encompassing both direct physiological reactions and indirect psychological distress.

PHYSICAL HEALTH EFFECTS

- **Respiratory irritation:** Foul odors, especially those containing irritant gases like hydrogen sulfide or ammonia, can cause a range of respiratory issues. Exposure can trigger eye, nose, and throat irritation, coughing, wheezing, and shortness of breath.
- **Worsened chronic conditions:** For individuals with pre-existing conditions like asthma or chronic obstructive pulmonary disease (COPD), exposure to malodor can


exacerbate symptoms and lead to more serious health problems.

- **Acute symptoms:** A person exposed to strong odors may experience headaches, dizziness, nausea, and fatigue. In a 2021 hydrogen sulfide crisis in Carson, California, residents reported high rates of these symptoms, with many continuing to experience them months after the event.
- **Systemic effects:** Certain volatile organic compounds (VOCs) that emit strong odors, such as those found in chemical manufacturing and dry cleaning, have been linked to damage to the liver, kidneys, and central nervous system with prolonged exposure.

MENTAL AND EMOTIONAL TOLL

The link between smell and the brain's limbic system means that malodor can directly influence mood and emotions.

- **HEIGHTENED STRESS AND ANXIETY:** The brain often interprets foul smells as a warning sign of an underlying threat, activating the "fight-or-flight" response. Persistent exposure to this perceived threat can lead to chronically elevated cortisol levels, anxiety, and a reduced quality of life.
- **NEGATIVE MOOD STATES:** Studies have consistently linked malodor exposure to negative mood states such as tension, depression, anger, and fatigue. One study on communities near industrial hog operations found that residents reported significantly lower mood ratings compared to a control group.
- **SLEEP DISTURBANCES:** The psychological distress caused by constant exposure to malodor can lead to sleep problems, which further degrade mental and physical health.
- **SOCIAL WITHDRAWAL:** In cases of body-related malodor (halitosis, for example), individuals may experience low self-esteem, social isolation, and depression, leading to social withdrawal and impaired daily functioning.

DUST

Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil, dust lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in homes, offices, and other human environments contains small amounts of plant pollen, human and animal hairs, textile fibers, paper fibers, minerals from outdoor soil, human skin cells, burnt meteorite particles, and many other materials which may be found in the local environment. Dust kicked up by vehicles traveling on roads may make up 33% of air pollution. Road dust consists of deposits of vehicle exhausts and industrial exhausts, particles from tire and brake wear, dust from paved roads or potholes, and dust from construction sites. Road dust is a significant source contributing to the generation and release of particulate matter into the atmosphere. Control of road dust is a significant challenge in urban areas, and also in other locations with high levels of vehicular traffic upon unsealed roads, such as mines and landfill dumps.

Dust control is the suppression of solid particles with diameters less than 500 micrometers. Dust poses a health threat to children, older people, and those with respiratory illnesses.

Dust is not always visible to the naked eye. Care is required when removing dust so it does not become airborne and redeposit elsewhere. Vacuuming is the best way to remove dust and transport it out of the building.

Certified HEPA (tested to MIL STD 282) can effectively trap 99.97% of dust at 0.3 micrometers. Not all HEPA (type/media) filters can effectively stop dust; while vacuum cleaners with HEPA (type/media) filters, water, or cyclones may filter more effectively than without, they may still exhaust millions of particles per cubic foot of air circulated. Central vacuum cleaners can be effective in removing dust, especially if they are exhausted directly to the outdoors. ULPA filtered vacuums offer a higher filtering rate than EPA vacuums and used in more sensitive areas.

Air filtering appliances differ greatly in their effectiveness. Laser particle counters are an effective way to measure filter effectiveness, medical grade instruments can test for particles as small as 0.3 micrometers. In order to test for dust in the air, there are several options available. Pre weighted filter and matched weight filters made from polyvinyl chloride or mixed cellulose ester are suitable for respirable dust (less than 10 micrometers in diameter).

A dust resistant surface is a state of prevention against dust contamination or damage, by a design or treatment of materials and items in manufacturing or through a repair process reduced tacticity of a synthetic layer or covering can protect surfaces and release small molecules that could have remained attached. A panel, container or enclosure with seams may feature types of strengthened rigidity or sealant to vulnerable edges and joins.¹

IMPROVE CLEANING PRACTICES²

Poor cleaning procedures, equipment and habits can inhibit the effective cleaning of buildings. Workers thinking big need to think small when it comes to health and cleaning.

Cleaning for appearance removes “big” visible soil rather than cleaning for health that removes “small” invisible bacteria, dust and airborne particulates and other micro, bio- and chemical contaminates – largely the contributors to unhealthy indoor environments.

- People can inhale particles 10 microns and smaller.
- Housekeeping is probably the most common means of removing potential allergens, and vacuum cleaners are the most commonly used tool.
- Vacuum cleaning removes some fungus and spores from carpeting, but it also reintroduces them to the air, either through the action of the vacuum’s beater bar or through conventional bags.
- Vacuuming without proper filtration is one of the main causes of the reintroduction of allergens and harmful particles into the air.
- Vacuums with high filtration collection systems retrieve soil and safely contain harmful particles, preventing them from being reintroduced into the built environment.

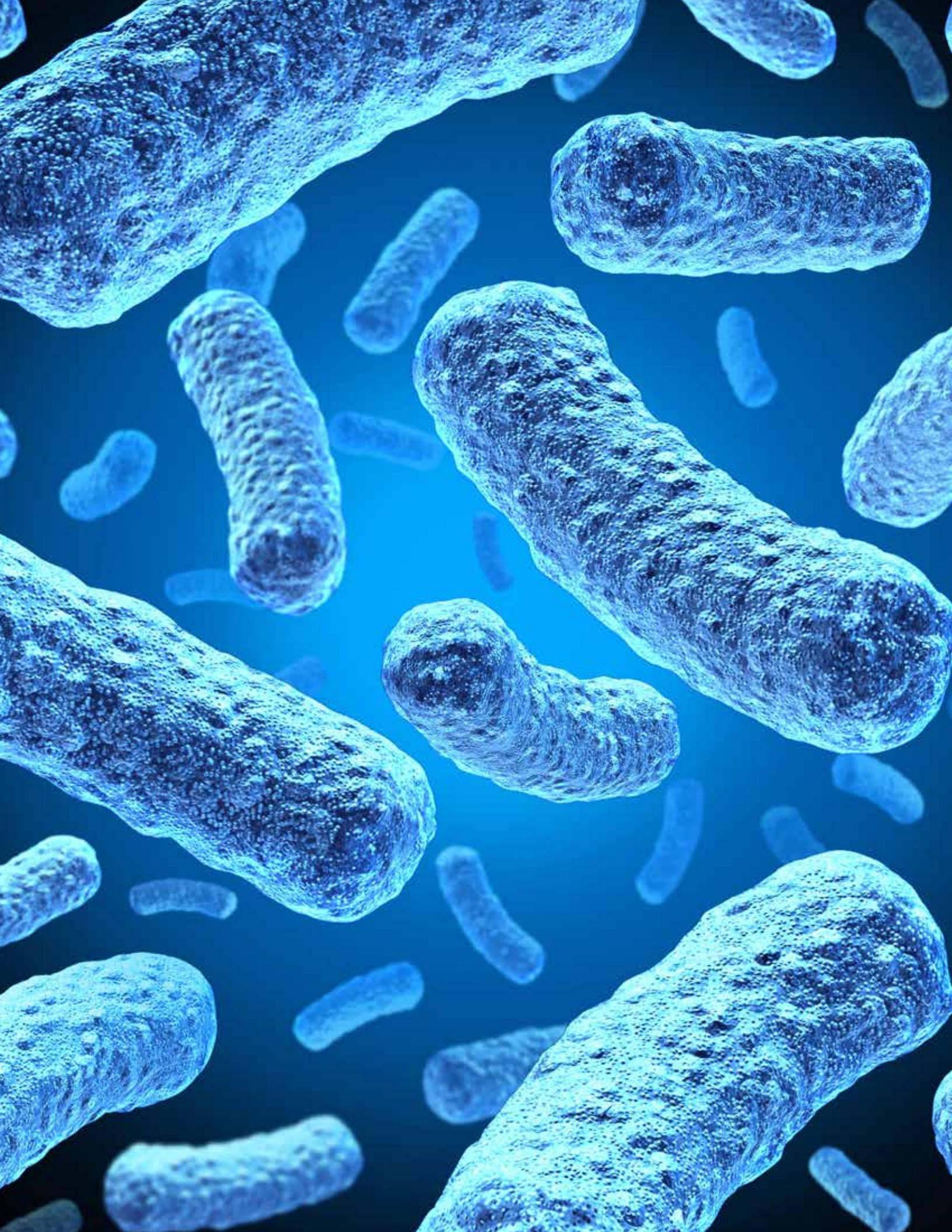
1 SOURCE: Wikipedia

2 JW Vaughan, JA Woodfolk, TA Platts-mills. “Assessment of vacuum cleaners and vacuum cleaner bags recommended for allergic subjects”. Journal of Allergy and Clinical Immunology. November 1999. 104(5):914-16. Ibid. Popplewell EJ, Innes VA, et al. Pediatr Allergy Immunol. 2000 Aug;11(3):142-8. “Indoor Allergens: Assessing and Controlling Adverse Health Effects”, Educational Committee on the Health Effects of Indoor Allergens. Division of Health Promotion and Disease Prevention. National Academy Press, Washington, D.C. pp 37-39, 86-117, 222-225

BACTERIA

Bacterial diseases include any type of illness caused by bacteria. Bacteria are a type of microorganism, which are tiny forms of life that can only be seen with a microscope. Other types of microorganisms include viruses, some fungi, and some parasites. Millions of bacteria normally live on the skin, in the intestines, and on the genitalia. The vast majority of bacteria do not cause disease, and many bacteria are actually helpful and even necessary for good health. These bacteria are sometimes referred to as "good bacteria" or "healthy bacteria." Harmful bacteria that cause bacterial infections and disease are called pathogenic bacteria. Bacterial diseases occur when pathogenic bacteria get into the body and begin to reproduce and crowd out healthy bacteria, or to grow in tissues that are normally sterile. Harmful bacteria may also emit toxins that damage the body. Common pathogenic bacteria and the types of bacterial diseases they cause include:

- **ESCHERICHIA COLI AND SALMONELLA**
cause food poisoning.
- **HELICOBACTER PYLORI**
cause gastritis and ulcers.
- **NEISSERIA GONORRHOEAE**
causes the sexually transmitted disease gonorrhea.
- **NEISSERIA MENINGITIDIS**
causes meningitis.
- **STAPHYLOCOCCUS AUREUS**
causes a variety of infections in the body, including boils, cellulitis, abscesses, wound infections, toxic shock syndrome, pneumonia, and food poisoning.
- **STREPTOCOCCAL BACTERIA**
cause a variety of infections in the body, including pneumonia, meningitis, ear infections, and strep throat.


Bacterial diseases are contagious and can result in many serious or life-threatening complications, such as blood poisoning (bacteremia), kidney failure, and toxic shock syndrome. Bacterial diseases are caused by harmful bacteria (pathogenic bacteria). The vast majority of bacteria do not cause disease, and many bacteria are actually helpful and even necessary for good health. Bacterial diseases occur when pathogenic bacteria get into an area of the body that is normally sterile, such as the bladder, or when they crowd out the helpful bacteria in places such as the intestines, vagina or mouth. Less common, bacterial infections can occur when healthy bacteria multiply uncontrollably.

VARIOUS WAYS PATHOGENIC BACTERIA CAN ENTER THE BODY

Pathogenic bacteria can enter the body through a variety of means including:

- Contamination of bites, cuts, rashes, abrasions and other breaks in the skin, gums and tissues
- Eating contaminated food
- Getting bitten by an infected insect
- Having sexual contact with an infected person
- Inhaling contaminated air-borne droplets into the nose and lungs
- Kissing an infected person
- Sharing needles for tattooing or drug use
- Through the eyes, ears or urethra
- Touching infected feces or body fluids, and not washing your hands before eating or touching your mouth, eyes or nose

Once bacteria enters the body, a healthy immune system will recognize the bacteria as foreign invaders and try to kill or stop the bacteria from reproducing. However, even in a healthy person, the body is not always able to stop the bacteria from multiplying and spreading. As the harmful bacteria reproduce, they can crowd out healthy bacteria and microorganisms and emit toxins that damage the cells of the body.¹

MILDEW

Mildew is a form of fungus. It is distinguished from its closely related counterpart, mold, largely by its color: moulds appear in shades of black, blue, red, and green, whereas mildew is white. It appears as a thin, superficial growth consisting of minute hyphae (fungal filaments) produced especially on living plants or organic matter such as wood, paper or leather. Both mould and mildew produce distinct offensive odors, and both have been identified as the cause of certain human ailments.

In horticulture, mildew is either species of fungus in the order Erysiphales, or fungus-like organisms in the family Peronosporaceae. It is also used more generally to mean mould growth. In Old English, mildew meant honeydew (a substance secreted by aphids on leaves, formerly thought to distill from the air like dew), and later came to mean mould or fungus.

Mildew requires certain factors to develop. Without any one of these, it cannot reproduce and grow. The requirements are a food source (any organic material), sufficient ambient moisture (a relative humidity of between 62 and 93 percent), and reasonable warmth (77 °F (25 °C) to 88 °F (31 °C) is optimal, but some growth can occur anywhere between freezing and 95 °F (35 °C)). Slightly acidic conditions are also preferred. At warmer temperatures, air is able to hold a greater volume of water; as air temperatures drop, so does the ability of air to hold moisture, which then tends to condense on cool surfaces. This can work to bring moisture onto surfaces where mildew is then likely to grow (such as an exterior wall). Preventing the growth of mildew requires a balance between moisture and temperature either in such a way that minimal moisture is available in the air and the air temperature is low enough to inhibit growth (at or below 70 °F (21 °C) without causing condensation to occur, or in such a way that warmer air temperatures, without an actual change in the amount of water vapor in that air, is by its nature "drier" (has a lower relative humidity) than cooler air and will tend to inhibit mildew growth in this way[clarification needed]). Warm temperatures coupled with high relative humidity set the stage for mildew growth.

Air conditioners are a tool for removing moisture and heat from otherwise humid warm air. The coils of an air conditioner cause moisture in the air to condense on them, eventually losing this excess moisture through a drain and placing it back into the environment. They can also inhibit mildew growth by lowering indoor temperatures. In order for them to be effective, air conditioners must recirculate the existing indoor air and not be exposed to warm, humid outside air. Some energy efficient air conditioners may cool a room so quickly that they do not have an opportunity to also effectively collect and drain significant ambient water vapor.¹

MOLD

Mold is a fungus that grows in the form of multicellular filaments called hyphae. In contrast, fungi that can adopt a single-celled growth habit are called yeasts.

Molds are a large and taxonomically diverse number of fungal species in which the growth of hyphae results in discoloration and a fuzzy appearance, especially on food. The network of these tubular branching hyphae, called a mycelium, is considered a single organism. The hyphae are generally transparent, so the mycelium appears like very fine, fluffy white threads over the surface. Cross-walls (septa) may delimit connected compartments along the hyphae, each containing one or multiple, genetically identical nuclei. The dusty texture of many molds is caused by profuse production of asexual spores (conidia) formed by differentiation at the ends of hyphae. The mode of formation and shape of these spores is traditionally used to classify molds. Many of these spores are colored, making the fungus much more obvious to the human eye at this stage in its life-cycle. Molds are considered to be microbes and do not form a specific taxonomic or phylogenetic grouping, but can be found in the divisions Zygomycota and Ascomycota. In the past, most molds were classified within the Deuteromycota.

Molds cause biodegradation of natural materials, which can be unwanted when it becomes food spoilage or damage to property. They also play important roles in biotechnology and food science in the production of various foods, beverages, antibiotics, pharmaceuticals and enzymes. Some diseases of animals and humans can be caused by certain molds: disease may result from allergic sensitivity to mold spores, from growth of pathogenic molds within the body, or from the effects of ingested or inhaled toxic compounds (mycotoxins) produced by molds.

Not all chemicals can destroy mold, some only remove the mold stains. To achieve the desired results, select the proper chemical and follow the manufacturer's guidelines.

There are thousands of known species of molds, which have diverse life-styles including saprotrophs, mesophiles, psychrophiles and thermophiles and a very few opportunistic pathogens of humans. They all require moisture for growth and some live in aquatic environments. Like all fungi, molds derive energy not through photosynthesis but from the organic matter on which they live, utilising heterotrophy. Typically, molds secrete hydrolytic enzymes, mainly from the

hyphal tips. These enzymes degrade complex biopolymers such as starch, cellulose and lignin into simpler substances which can be absorbed by the hyphae. In this way, molds play a major role in causing decomposition of organic material, enabling the recycling of nutrients throughout ecosystems. Many molds also synthesise mycotoxins and siderophores which, together with lytic enzymes, inhibit the growth of competing microorganisms. Molds can also grow on stored food for animals and humans, making the food unpalatable or toxic and are thus a major source of food losses and illness. Many strategies for food preservation (salting, pickling, jams, bottling, freezing, drying) are to prevent or slow mold growth as well as growth of other microbes.

COMMON MOLDS

ACREMONIUM	PENICILLIUM
ALTERNARIA	RHIZOPUS
ASPERGILLUS	STACHYBOTRYS
CLADOSPORIUM	TRICHODERMA
FUSARIUM	TRICHOPHYTON
MUCOR	

Molds reproduce by producing large numbers of small spores, which may contain a single nucleus or be multinucleate. Mold spores can be asexual (the products of mitosis) or sexual (the products of meiosis); many species can produce both types. Some molds produce small, hydrophobic spores that are adapted for wind dispersal and may remain airborne for long periods; in some the cell walls are darkly pigmented, providing resistance to damage by ultraviolet radiation. Other mold spores have slimy sheaths and are more suited to water dispersal. Mold spores are often spherical or ovoid single cells, but can be multicellular and variously shaped. Spores may cling to clothing or fur; some are able to survive extremes of temperature and pressure.

Although molds can grow on dead organic matter everywhere in nature, their presence is visible to the unaided eye only when they form large colonies. A mold colony does not consist of discrete organisms but is an interconnected network of hyphae called a mycelium. All growth occurs at hyphal tips, with cytoplasm and organelles flowing forwards as the hyphae advance over or through new food sources. Nutrients are absorbed at the hyphal tip. In artificial environments such as buildings, humidity and temperature are often stable enough to foster the growth of mold colonies, commonly seen as a downy or fuzzy coating growing on food or other surfaces.

Few molds can begin growing at temperatures of 4 °C (39 °F) or below, so food is typically refrigerated at this temperature. When conditions do not enable growth to take place, molds may remain alive in a dormant state depending on the species, within a large range of temperatures.¹

WHY WE CLEAN

To avoid food borne illness

By keeping people healthy we sustain company attendance and efficiencies.

To sustain a productive and happy workforce

To prevent pandemics

To prevent being sued for being irresponsible to others.

To stay healthy and not become sick

To prevent a dirty environment that can shut down a company's office.

HOW CAN NEXUS HELP YOUR COMPANY?

WE OFFER THE FOLLOWING SALES AND CONSULTING SERVICES:

- Environmental consultation of your operational areas and recommendations on how to improve cleanliness.
- Product demonstrations of product categories like: chemicals, floor care equipment, sanitizing dispensers and even can liners.
- Product training and education
- Cost saving proposals that will help you save money through new efficiencies.
- Free samples for trial within your operation
- Distributor networking connections.

JAN/SAN MANUFACTURERS

nexus
JAN/SAN DIVISION

ABCO

Full line of green seal certified mops, dust mops, micro-fiber towels, brooms, handles and brushes.

ALPINE INDUSTRIES

A leading manufacturer of innovative stainless steel, cement, plastic and custom branded waste receptacles.

AMERICO

Full line of high quality innovative floor pads and floor care cleaning products.

BUFFALO INDUSTRIES

Full line of cotton and synthetic industrial shop towels, wipers, bar towels, disposable coveralls and sundries.

DIAMOND WIPES

A complete line of sanitizing and disinfecting wipes, hand and probe wipes.

I-TEAM GLOBAL

Innovative line of I-mop machines, autonomous scrubbers and vacuums, cleanroom equipment and world class microfiber systems.

JUSTRITE

A full line of industrial safety cabinets, fuel tank products, and signage.

MIDWEST SPECIALTY PRODUCTS

A full line of linen paper napkins, standard tissue napkins, wipers and industrial towels.

www.mspconverting.com

MILWAUKEE DUSTLESS BRUSH

Premium fine sweep push brooms, polypropylene upright and blended corn brooms, window and floor squeegees and a variety of hand held brushes.

www.milwaukeedustless.com

MINUTEMAN

Full line of advanced technology, German made auto-scrubbers and floor care cleaning equipment.

www.minutemanintl.com

MOREX

Full line of virgin white, natural recycled and TAD towel and tissue products with regional CA warehouses.

www.morexproducts.com

MULTI-CLEAN

A full line of high performance commercial cleaning chemicals and floor maintenance products for the commercial cleaning industry.

www.multi-clean.com

NOTRAX MATS

A full line of industrial, hospitality, and foodservice matting with entry mats, anti-fatigue mats, and custom branded matting.

www.notrax.justrite.com

PORTION PAC

Full line of green seal certified concentrated portion-controlled cleaning, sanitizing and disinfectant chemicals.

www.portionpac.com

PROTEAM

A full line of vacuums, hip-style, canister, upright battery or powercord vacuums designed to clean for health and productivity. CRI certified.

www.pro-team.com

PUDU ROBOTICS

Innovative line of floor care and restaurant server robotics.

www.pudurobotics.com/en

ROCHESTER MIDLAND

A complete line of floor care, soaps, sanitizers and industrial cleaning chemicals and dispensing systems.

www.rochestermidland.com

SHORE MANUFACTURING INC

A full line of non-woven synthetic foodservice and industrial wipers and towels.

www.shoremfgllc.com

SIERRA SOFT

Full line of liquid and foaming hand soap, seat covers, gloves, micro-fiber and feminine hygiene products.

www.sierrasoftusa.com

SIGMA COMMERCIAL BAG

Full line supplier of HDPE and LDPE stock and custom can liners, FDA bags, hospital bags, and pallet covers.

www.sigmacommercialbag.com

TERSANO

An innovative lineup of SAO, or Stabilized Aqueous Ozone, disinfectant and water cleaning products.

www.tersano.com

VECTAIR SYSTEMS

A collection of innovative, harmonized air care systems.

www.vectairsystems.com

WHERE WE ARE

★ **Headquarters & Sales Office**
Pleasanton, California

★ **Regional Sales Office**
Lake Forest, California

★ **Regional Sales Office**
Tukwila, (Seattle) Washington

★ **Regional Sales Office**
Phoenix, Arizona

● **Sales Region**
Oregon

● **Sales Region**
Idaho

● **Sales Region**
Montana

● **Sales Region**
Utah

● **Sales Region**
Wyoming

● **Sales Region**
Colorado

● **Sales Region**
Nevada

● **Sales Region**
Alaska

● **Sales Region**
Hawaii

● **Sales Region**
Vancouver (Canada)

● **Sales Region**
New Mexico



In 2009 Nexus was asked by many of our client manufacturer partners to expand into Southern California. Today we have a large regional sales office in Orange County that supports both a foodservice and a jan/san division. In 2015 we were again asked to expand to the Pacific Northwest by our client manufacturers as well as in support of our customers. As a result we now have a regional sales office just outside of Seattle in support of our foodservice and jan/san sales teams. In 2018-2019 Nexus again chose to expand by pushing east into the Southwest and Rocky Mountain Region. It is our goal to continue to grow and to be the very best Brokerage Agency in the 13 Western States.

NEXUS JAN/SAN SALES TEAM - WESTERN U.S.

Robert Doscher
Sales Director - Northern CA
510-541-5997
robert@nexus-now.com

Robin Braun
Account Executive - Pacific NW
714-362-6131
rbraun@nexus-now.com

Jennie Esparza
Account Executive - Southwest
714-788-0465
jesparza@nexus-now.com

Greg Fishburn
Vice President of Jan/San
916-996-8139
greg@nexus-now.com

Eldrick Garcia
Account Executive - Southern CA
949-337-8482
egarcia@nexus-now.com

Debra Gin
Senior Inside Sales Administrator - Northern CA
510-567-1000 x7221
deb@nexus-now.com

Felix Hermosillo
Business Development & Demo Equipment Specialist
510-316-4465
felix@nexus-now.com

Tom LaVoise
Account Executive - Southern CA
661-433-7037
tlavoise@nexus-now.com

Juston Martin
Account Executive - Pacific NW
206-356-4585
jmartin@nexus-now.com

Chris Matson
President
510-414-3252
cmatson@nexus-now.com

Chris Pasquin
Account Executive - Northern CA
925-353-4449
cpasquin@nexus-now.com

Brody Patterson
Sales Director - Rocky Mountain / Southwest
801-721-9892
bpatterson@nexus-now.com

CONTACT US

800.482.6088 | nexus-now.com

NORTHERN CALIFORNIA SALES OFFICE

324 Earhart Way
Livermore, CA 94551

NORTHERN CALIFORNIA JAN/SAN OFFICE

192 W. Larch Rd, Suite G
Tracy, CA 95304

SOUTHERN CALIFORNIA SALES OFFICE

21084 Bake Pkwy., Suite 106
Lake Forest, CA 92630

SEATTLE, WASHINGTON SALES OFFICE

1044 Industry Drive, Bldg. 34
Tukwila, WA 98188

